Safe Haskell | Safe-Inferred |
---|---|
Language | GHC2021 |
Synopsis
- data Matches a b
- ltrace :: Show a => String -> a -> a
- ltraceM :: Applicative m => Show a => String -> a -> m ()
- pShow :: Show a => a -> Text
- toString :: Text -> String
- toText :: String -> Text
- unzipMatches :: [Matches a b] -> ([a], [a], [b])
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- class Applicative m => Monad (m :: Type -> Type) where
- class Typeable a => Data a
- class Functor (f :: Type -> Type) where
- class Typeable (a :: k)
- class Monad m => MonadFix (m :: Type -> Type) where
- mfix :: (a -> m a) -> m a
- class Monad m => MonadFail (m :: Type -> Type) where
- fromString :: IsString a => String -> a
- class Foldable (t :: TYPE LiftedRep -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldMap' :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- toList :: t a -> [a]
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class Generic a
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data Maybe a
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- data TyCon
- data Void
- vacuous :: Functor f => f Void -> f a
- absurd :: Void -> a
- class Bifunctor (p :: Type -> Type -> Type) where
- class Monad m => MonadIO (m :: Type -> Type) where
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- unless :: Applicative f => Bool -> f () -> f ()
- replicateM_ :: Applicative m => Int -> m a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- forever :: Applicative f => f a -> f b
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
- fmapDefault :: Traversable t => (a -> b) -> t a -> t b
- type TypeRep = SomeTypeRep
- typeRepTyCon :: TypeRep -> TyCon
- typeRepFingerprint :: TypeRep -> Fingerprint
- typeRepArgs :: TypeRep -> [TypeRep]
- typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep
- typeOf7 :: Typeable t => t a b c d e f g -> TypeRep
- typeOf6 :: Typeable t => t a b c d e f -> TypeRep
- typeOf5 :: Typeable t => t a b c d e -> TypeRep
- typeOf4 :: Typeable t => t a b c d -> TypeRep
- typeOf3 :: Typeable t => t a b c -> TypeRep
- typeOf2 :: Typeable t => t a b -> TypeRep
- typeOf1 :: Typeable t => t a -> TypeRep
- typeOf :: Typeable a => a -> TypeRep
- splitTyConApp :: TypeRep -> (TyCon, [TypeRep])
- showsTypeRep :: TypeRep -> ShowS
- rnfTypeRep :: TypeRep -> ()
- mkFunTy :: TypeRep -> TypeRep -> TypeRep
- gcast2 :: forall {k1} {k2} {k3} c (t :: k2 -> k3 -> k1) (t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3). (Typeable t, Typeable t') => c (t a b) -> Maybe (c (t' a b))
- gcast1 :: forall {k1} {k2} c (t :: k2 -> k1) (t' :: k2 -> k1) (a :: k2). (Typeable t, Typeable t') => c (t a) -> Maybe (c (t' a))
- gcast :: forall {k} (a :: k) (b :: k) c. (Typeable a, Typeable b) => c a -> Maybe (c b)
- funResultTy :: TypeRep -> TypeRep -> Maybe TypeRep
- eqT :: forall {k} (a :: k) (b :: k). (Typeable a, Typeable b) => Maybe (a :~: b)
- cast :: (Typeable a, Typeable b) => a -> Maybe b
- tyConPackage :: TyCon -> String
- tyConName :: TyCon -> String
- tyConModule :: TyCon -> String
- tyConFingerprint :: TyCon -> Fingerprint
- trLiftedRep :: TypeRep ('BoxedRep 'Lifted)
- rnfTyCon :: TyCon -> ()
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- or :: Foldable t => t Bool -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- concat :: Foldable t => t [a] -> [a]
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- and :: Foldable t => t Bool -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- data Proxy (t :: k) = Proxy
- data (a :: k1) :~~: (b :: k2) where
- data (a :: k) :~: (b :: k) where
- byteSwap64 :: Word64 -> Word64
- byteSwap32 :: Word32 -> Word32
- byteSwap16 :: Word16 -> Word16
- bitReverse8 :: Word8 -> Word8
- bitReverse64 :: Word64 -> Word64
- bitReverse32 :: Word32 -> Word32
- bitReverse16 :: Word16 -> Word16
- maybeToList :: Maybe a -> [a]
- maybe :: b -> (a -> b) -> Maybe a -> b
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- listToMaybe :: [a] -> Maybe a
- isNothing :: Maybe a -> Bool
- isJust :: Maybe a -> Bool
- fromMaybe :: a -> Maybe a -> a
- fromJust :: HasCallStack => Maybe a -> a
- catMaybes :: [Maybe a] -> [a]
- fix :: (a -> a) -> a
- void :: Functor f => f a -> f ()
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- ($>) :: Functor f => f a -> b -> f b
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- when :: Applicative f => Bool -> f () -> f ()
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- ap :: Monad m => m (a -> b) -> m a -> m b
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- data Text
- data Map k a
- data Set a
- class NFData2 (p :: Type -> Type -> Type) where
- liftRnf2 :: (a -> ()) -> (b -> ()) -> p a b -> ()
- class NFData1 (f :: TYPE LiftedRep -> TYPE LiftedRep) where
- liftRnf :: (a -> ()) -> f a -> ()
- class NFData a where
- rnf :: a -> ()
- rwhnf :: a -> ()
- rnf2 :: (NFData2 p, NFData a, NFData b) => p a b -> ()
- rnf1 :: (NFData1 f, NFData a) => f a -> ()
- force :: NFData a => a -> a
- deepseq :: NFData a => a -> b -> b
- (<$!!>) :: (Monad m, NFData b) => (a -> b) -> m a -> m b
- ($!!) :: NFData a => (a -> b) -> a -> b
- class MonadTrans (t :: (Type -> Type) -> Type -> Type) where
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- asks :: MonadReader r m => (r -> a) -> m a
- mapReader :: (a -> b) -> Reader r a -> Reader r b
- mapReaderT :: (m a -> n b) -> ReaderT r m a -> ReaderT r n b
- runReader :: Reader r a -> r -> a
- withReader :: (r' -> r) -> Reader r a -> Reader r' a
- withReaderT :: forall r' r (m :: Type -> Type) a. (r' -> r) -> ReaderT r m a -> ReaderT r' m a
- type Reader r = ReaderT r Identity
- newtype ReaderT r (m :: Type -> Type) a = ReaderT {
- runReaderT :: r -> m a
Documentation
unzipMatches :: [Matches a b] -> ([a], [a], [b]) Source #
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative
computations. Defined by
guard True =pure
() guard False =empty
Examples
Common uses of guard
include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative
-based parser.
As an example of signaling an error in the error monad Maybe
,
consider a safe division function safeDiv x y
that returns
Nothing
when the denominator y
is zero and
otherwise. For example:Just
(x `div`
y)
>>>
safeDiv 4 0
Nothing
>>>
safeDiv 4 2
Just 2
A definition of safeDiv
using guards, but not guard
:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y | y /= 0 = Just (x `div` y) | otherwise = Nothing
A definition of safeDiv
using guard
and Monad
do
-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join
function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'
' can be understood as the join
bssdo
expression
do bs <- bss bs
Examples
A common use of join
is to run an IO
computation returned from
an STM
transaction, since STM
transactions
can't perform IO
directly. Recall that
atomically
:: STM a -> IO a
is used to run STM
transactions atomically. So, by
specializing the types of atomically
and join
to
atomically
:: STM (IO b) -> IO (IO b)join
:: IO (IO b) -> IO b
we can compose them as
join
.atomically
:: STM (IO b) -> IO b
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following:
- Left identity
return
a>>=
k = k a- Right identity
m
>>=
return
= m- Associativity
m
>>=
(\x -> k x>>=
h) = (m>>=
k)>>=
h
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as
' can be understood as the >>
bsdo
expression
do as bs
Inject a value into the monadic type.
Instances
Monad Complex | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad Par1 | Since: base-4.9.0.0 |
Monad P | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad ReadPrec | Since: base-2.1 |
Monad Seq | |
Monad Tree | |
Monad IO | Since: base-2.1 |
Monad Q | |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad Maybe | Since: base-2.1 |
Monad Solo | Since: base-4.15 |
Monad [] | Since: base-2.1 |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
Monad (ST s) | Since: base-2.1 |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monad (ST s) | Since: base-2.1 |
Monad m => Monad (ListT m) | |
Monad m => Monad (MaybeT m) | |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
(Monoid w, Functor m, Monad m) => Monad (AccumT w m) | |
(Monad m, Error e) => Monad (ErrorT e m) | |
Monad m => Monad (ExceptT e m) | |
Monad m => Monad (IdentityT m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (SelectT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
Monad (ContT r m) | |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
Monad ((->) r) | Since: base-2.1 |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
Monad m => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
The Data
class comprehends a fundamental primitive gfoldl
for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap
combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap
combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT
, gmapQ
, gmapM
, etc are all provided with
default definitions in terms of gfoldl
, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap
combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl
is more higher-order
than the gmap
combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap
combinators will be
moved out of the class Data
.)
Conceptually, the definition of the gmap
combinators in terms of the
primitive gfoldl
requires the identification of the gfoldl
function
arguments. Technically, we also need to identify the type constructor
c
for the construction of the result type from the folded term type.
In the definition of gmapQ
x combinators, we use phantom type
constructors for the c
in the type of gfoldl
because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl
we simply use the plain constant type
constructor because gfoldl
is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)
). When the query is meant to compute a value
of type r
, then the result type within generic folding is r -> r
.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable
option, GHC can generate instances of the
Data
class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2 toConstr (C1 _ _) = con_C1 toConstr C2 = con_C2 dataTypeOf _ = ty_T con_C1 = mkConstr ty_T "C1" [] Prefix con_C2 = mkConstr ty_T "C2" [] Prefix ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
Instances
Data All | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Data Version | Since: base-4.7.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation # toConstr :: SpecConstrAnnotation -> Constr # dataTypeOf :: SpecConstrAnnotation -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # | |
Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Data ByteString | |
Defined in Data.ByteString.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ByteString | |
Defined in Data.ByteString.Lazy.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ShortByteString | |
Defined in Data.ByteString.Short.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString # toConstr :: ShortByteString -> Constr # dataTypeOf :: ShortByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) # gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # | |
Data IntSet | |
Defined in Data.IntSet.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Data Expr | |
Defined in Text.Pretty.Simple.Internal.Expr gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Expr -> c Expr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Expr # dataTypeOf :: Expr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Expr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Expr) # gmapT :: (forall b. Data b => b -> b) -> Expr -> Expr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Expr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Expr -> r # gmapQ :: (forall d. Data d => d -> u) -> Expr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Expr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Expr -> m Expr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Expr -> m Expr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Expr -> m Expr # | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Data Body | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Data Bytes | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes # dataTypeOf :: Bytes -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Data Con | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con # dataTypeOf :: Con -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) # gmapT :: (forall b. Data b => b -> b) -> Con -> Con # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # | |
Data Dec | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec # dataTypeOf :: Dec -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # | |
Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data DerivClause | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause # toConstr :: DerivClause -> Constr # dataTypeOf :: DerivClause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # | |
Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy # toConstr :: DerivStrategy -> Constr # dataTypeOf :: DerivStrategy -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # | |
Data DocLoc | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DocLoc -> c DocLoc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DocLoc # toConstr :: DocLoc -> Constr # dataTypeOf :: DocLoc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DocLoc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocLoc) # gmapT :: (forall b. Data b => b -> b) -> DocLoc -> DocLoc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQ :: (forall d. Data d => d -> u) -> DocLoc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DocLoc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # | |
Data Exp | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp # dataTypeOf :: Exp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # | |
Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig # toConstr :: FamilyResultSig -> Constr # dataTypeOf :: FamilyResultSig -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection # toConstr :: FixityDirection -> Constr # dataTypeOf :: FixityDirection -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # | |
Data Foreign | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign # toConstr :: Foreign -> Constr # dataTypeOf :: Foreign -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Data Info | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info # dataTypeOf :: Info -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) # gmapT :: (forall b. Data b => b -> b) -> Info -> Info # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # | |
Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn # toConstr :: InjectivityAnn -> Constr # dataTypeOf :: InjectivityAnn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Data Lit | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit # dataTypeOf :: Lit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Data Match | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Data ModName | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName # toConstr :: ModName -> Constr # dataTypeOf :: ModName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # | |
Data Module | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo # toConstr :: ModuleInfo -> Constr # dataTypeOf :: ModuleInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # | |
Data Name | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour # toConstr :: NameFlavour -> Constr # dataTypeOf :: NameFlavour -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Data OccName | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
Data Overlap | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap # toConstr :: Overlap -> Constr # dataTypeOf :: Overlap -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # | |
Data Pat | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat # dataTypeOf :: Pat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # | |
Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs # toConstr :: PatSynArgs -> Constr # dataTypeOf :: PatSynArgs -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Data PkgName | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName # toConstr :: PkgName -> Constr # dataTypeOf :: PkgName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # | |
Data Pragma | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma # toConstr :: Pragma -> Constr # dataTypeOf :: Pragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # | |
Data Range | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range # dataTypeOf :: Range -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) # gmapT :: (forall b. Data b => b -> b) -> Range -> Range # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # | |
Data Role | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data Specificity | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Specificity -> c Specificity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Specificity # toConstr :: Specificity -> Constr # dataTypeOf :: Specificity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Specificity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Specificity) # gmapT :: (forall b. Data b => b -> b) -> Specificity -> Specificity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQ :: (forall d. Data d => d -> u) -> Specificity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Specificity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # | |
Data Stmt | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt # dataTypeOf :: Stmt -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Data Type | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead # toConstr :: TypeFamilyHead -> Constr # dataTypeOf :: TypeFamilyHead -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Data () | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Data a => Data (ZipList a) | Since: base-4.14.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) # toConstr :: ZipList a -> Constr # dataTypeOf :: ZipList a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # | |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |
Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |
Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Data a => Data (Tree a) | |
Defined in Data.Tree gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) # toConstr :: Tree a -> Constr # dataTypeOf :: Tree a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # | |
Data a => Data (CommaSeparated a) | |
Defined in Text.Pretty.Simple.Internal.Expr gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CommaSeparated a -> c (CommaSeparated a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (CommaSeparated a) # toConstr :: CommaSeparated a -> Constr # dataTypeOf :: CommaSeparated a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (CommaSeparated a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (CommaSeparated a)) # gmapT :: (forall b. Data b => b -> b) -> CommaSeparated a -> CommaSeparated a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CommaSeparated a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CommaSeparated a -> r # gmapQ :: (forall d. Data d => d -> u) -> CommaSeparated a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CommaSeparated a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CommaSeparated a -> m (CommaSeparated a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CommaSeparated a -> m (CommaSeparated a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CommaSeparated a -> m (CommaSeparated a) # | |
Data flag => Data (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr flag -> c (TyVarBndr flag) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TyVarBndr flag) # toConstr :: TyVarBndr flag -> Constr # dataTypeOf :: TyVarBndr flag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TyVarBndr flag)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TyVarBndr flag)) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr flag -> TyVarBndr flag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr flag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr flag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Data a => Data (a) | Since: base-4.15 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> (a) -> c (a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a) # dataTypeOf :: (a) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a)) # gmapT :: (forall b. Data b => b -> b) -> (a) -> (a) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # | |
Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
(Typeable m, Typeable a, Data (m a)) => Data (WrappedMonad m a) | Since: base-4.14.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonad m a -> c (WrappedMonad m a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonad m a) # toConstr :: WrappedMonad m a -> Constr # dataTypeOf :: WrappedMonad m a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonad m a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonad m a)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonad m a -> WrappedMonad m a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonad m a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonad m a -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # |